福井県技術開発事業化ロードマップ

平成25年3月

福井県

目 次

1	技術	開発	事業化	, 🗆	_	ド	マ	ツ	プ	の	作	成			•				•		•	•	•	•	•			1
2	技術	開発	事業化	, 🗆	_	ド	マ	ツ	プ	作	成	対	象	の	製	品	•	技	術		•							2
3	福井	県の	優位技	術	マ	ツ	プ		•		•	•	•			•	•						•					3
4	技術	開発	事業化	, 口	_	ド	マ	ッ	プ																			
	1	軽量	化材料		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		4
	2	省エ	ネ機器	•	•		•		•	•	•	•	•		•	•	•	•	•		•				•	•		5
	3	太陽	光発電	•	•	•	•		•		•	•		•	•	•	•	•		•	•	•		•		•		6
	4	燃料	電池	•	•				•			•			•	•					•					•		7
	5	非石	油系燃	料					•			•			•	•					•					•		8
	6	二次	電池		•				•			•						•								•		9
	7	植物	工場		•		•		•			•	•		•	•		•		•	•						1	O
	8	スマ	ート技	術			•		•			•		•	•	•		•		•	•						1	1
	9	資源	リサイ	ク	ル				•			•						•									1	2
	10	原子	力関連	製	品				•			•						•									1	3
	11)	医療	用具	•	•		•		•			•						•									1	4
	12	介護	用品		•				•			•						•									1	5
	13	快適	生活製	品			•		•			•			•	•		•		•	•						1	6
	14)	健康	志向食	品	等		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		1	7
(参	*考)	技術	開発事	業	化		_	ド	マ	ッ	プ	の	検	討	経	過											1	8

1 技術開発事業化ロードマップの作成

(1) 作成の趣旨

本県では、本県産業の持続的な発展に向けた経済戦略と具体的なプロジェクトをとりまとめた「福井経済新戦略」(平成22年12月策定 福井県経済新戦略検討会議)を基に、環境・エネルギー分野などで新たな成長産業を創出するプロジェクトなどを実施している。

次世代自動車部品や分散型発電など、新たな成長産業を本県に集積するためには、産学官による研究開発や製品開発のスピード化を図り、事業化を促進していく必要がある。

このため、市場拡大が見込まれる環境・エネルギー分野や医療分野等において、本県企業による事業化が期待でき、 今後注力して開発すべき製品・技術の中から代表的なものを選定し、それぞれの開発スケジュールや事業化目標を定め、 県内における技術の具体的発展の形を示すことにより、産学官による先端技術の開発および事業化を着実に実施してい く。

(2) 対象期間

平成24年度 ~ 平成32年度 (9年間)

(福井経済新戦略の計画終了年度(平成32年度(2020年度))まで)

(3) 作成方法

「福井経済新戦略」の重点分野を参考に、県内企業および新たな価値提案産業創出チーム員の意見を踏まえて選定した製品・技術について、事業化までの工程を「技術開発」、「用途開発」、「事業化技術開発」の3区分に分け、県内企業や県内大学等の意見を踏まえ、開発内容、開発期間および売上目標を示す。

なお、国内外の動向や社会経済情勢の変化、技術革新の進展等に適合させるため、必要に応じてこのロードマップを 見直していく。

技術開発事業化ロードマップ作成対象の製品・技術

福井経済新戦略(平成22年12月策定)

基本戦略2:福井モデル「新たな成長産業」の展開

【戦略1】

「福井型未来都市提案産業」を形成し、新たな需要を 生み出す成長分野に重点を置く産業構造に転換する。

福井のクリーンエネルギー創出県、健康長寿先進県、住み易さNo1県としての特性を活かした、福井型未来都市(ゼロエミッション都市・ジェロントロジー都市・ワークライフベストマッチ都市)を形成するために必要となる新たな時代の製品を提供する産業群(環境・エネルギー産業、健康・快適生活産業など)を創り出す。

(プロジェクト 1)

「福井型未来都市提案産業」を担う企業群の創出

県内中小企業の「福井型未来都市提案産業」 (環境・エネルギー産業、健康・快適生活産業など)への進出や県外からの投資を呼び込む新たな優遇支援システムを整備し、成長分野へのシフトにより産業構造を転換する。

(プロジェクト 2)

「『環境先進県ふくい』での環境・エネルギー関連産業」の育成

本県がもつ先進技術を基にクリーンエネルギー先進県、環境づくり先進県としての特性を生かした都市づくりに関連する環境・エネルギー分野の研究開発、人材育成、産業化を進める。

(プロジェクト3)

「福井発『健康で快適な生活』実現ビジネス」の推進

健康長寿、子育て日本一といった福井県における「健康で快適な生活を実現するための課題・ ニーズ」に対応した製品・サービスの開発・実用 化とビジネス展開を進める。

【本県企業による事業化が期待でき、今後注力して開発すべき製品・技術(代表的なもの)】

分 野	開発すべき製品	必要とする技術	技術項目	ページ
	航空機用部材	炭素繊維強化複合材料製造·成形加工技術		
	自動車用部材	炭素繊維強化複合材料製造•成形加工技術	① 軽量化材料	4
	軽量部品	軽量金属部品•炭素繊維複合部材		
	次世代パワーデバイス	省電力高耐圧パワーデバイス製造技術	 -② 省エネ機器	5
	電気自動車用モーター	高性能モーター技術	2 有 二 个	J
	太陽光発電テキスタイル	太陽光発電テキスタイル製造技術	- -③ 太陽光発電	6
	有機系太陽電池	太陽電池構成部材の開発	一	O
	エネファーム	燃料電池構成部材の開発	④ 燃料電池	7
	バイオ燃料	木材等を原料とするバイオ燃料の開発	- - ⑤ 非石油系燃料	8
	FT合成燃料	FT合成用触媒、合成装置の開発	10 并有曲示於科	0
	移動体用リチウム電池	自動車用電池材料の開発	- ⑥ 二次電池	9
	定置型大型蓄電池	住宅用電池材料の開発	一次电池	9
環境・エネ		イオンビームによる生産量向上技術		
ルギー	次世代植物工場	地中熱を活用したヒートパイプ技術	⑦ 植物工場	10
		LEDを活用した環境制御技術		
		急速充電技術		
	スマートコミュニティシステム	オンデマンド交通システムの開発	¬ 	1 1
		スマート家電製品の開発		11
	クラウド関連製品	クラウドコンピューティング技術		
	再利田 条小壮料	金属イオン回収技術		
	再利用希少材料 	化学分離技術	】 ■⑨ 資源リサイクル	12
	パイナ五十十年	バイオマス利用プラスチック開発	 (9) 質/パソリイク/レ	12
	バイオ系材料	リサイクル炭素繊維加工技術	1	
	原子力防護ウェア	通気性、柔軟性等に優れたウェアの開発		
	廃炉関連装置	レーザ切断・レーザ除染・原子炉解体技術	⑩ 原子力関連製品	13
	ロボット	耐放射線ロボット技術、遠隔操作技術		
	人体代替部材	高機能繊維加工技術		
	八件八首部构	チタン等金属精密加工技術	⑪ 医療用具	14
	医療器具•機器	チタン等金属精密加工技術		
	位置検知システム	RFIDテキスタイルの実用化		
独生巨士	健康管理システム	ウェアラブルコンピュータ技術	⑫ 介護用品	15
健康長寿・ 快適生活	介護ロボット	介護ロボットの開発		
	パーソナルスポーツウェア	快適機能テキスタイルの開発		
	食器·住宅内装材	軽量・断熱性プラスチックの開発	⑬ 快適生活製品	16
	防火服・防火カーテン	極限機能テキスタイルの開発		
	高付加価値食品	食品の高機能化	(1) 健康士白色日竺	17
	医薬品・化粧品・バイオ関連材料	県産品を活用した新用途開発	┪ 健康志向食品等	17

3 福井県の優位技術マップ

/\	田炎ナッキ制口			福美	井県の優位技術				1	ᆉᄷᇊᅙᄆ
分 野	開発すべき製品	繊維関連技術	眼鏡関連技術	機械関連技術	電気·電子関連技術	化学・プラスチック関連技術	情報通信関連技術	食品・その他	l	技術項目
	航空機用部材	炭素繊維複合材料加工技術		切削加工技術		プラスチック成型技術			[
	自動車用部材	炭素繊維複合材料加工技術	金属表面処理技術	切削加工技術		プラスチック成型技術				① 軽量化材料
	軽量部品		難加工金属加工技術	精密工作機械(鍛造)		 潤滑剤				
	次世代パワーデバイス				ナノめっき技術	溶剤•薬品			[② 省エネ機器
	電気自動車用モーター		金属曲げ加工技術	精密工作機械(曲げ加工)	電源制御技術		組込みソフトウェア技術			② 有工个機品
	太陽光発電テキスタイル	e-テキスタイル技術			配線•制御技術	樹脂コーティング技術				③ 太陽光発電
	有機系太陽電池			レーザ加工技術	配線・制御技術 ナノカーボン技術					⑤ 太陽兀光电
	エネファーム	炭素繊維複合材料加工技術	金属表面処理技術	精密プレス加工技術						④ 燃料電池
	バイオ燃料					バイオマス技術			[]	⑤ 非石油系燃料
環境・エネ	FT合成燃料			プラント関連技術		触媒技術				⑤ 非石油未燃料
ルギー	移動体用リチウム電池			金属端子	ナノめっき技術	セラミック微粒子製造技術				⑥ 二次電池
	定置型大型蓄電池			金属端子	ナノめっき技術	セラミック微粒子製造技術				0 一次电池
	次世代植物工場	eーテキスタイル技術 機能性繊維材料創成加工技術		ヒートパイプ技術 自動化技術	イオンビーム照射技術 電源制御技術		データ転送・管理技術			⑦ 植物工場
	スマートコミュニティシステム				急速充電技術 蓄電技術	樹脂皮膜技術	組込みソフトウェア技術			⑧ スマート技術
	クラウド関連製品						クラウドコンピューティング技術			の スマート技術
	再利用希少材料	機能性繊維材料創成加工技術				化学合成技術			_	② 咨询日共 / 万川
	バイオ系材料	機能性繊維材料創成加工技術				プラスチック材料加工技術				⑨ 資源リサイクル
	原子力防護ウェア	機能性繊維材料創成加工技術								
	廃炉関連装置			レーザ切断・除染技術 自動制御技術	センシング技術		組込みソフトウェア技術			⑩ 原子力関連製品
	ロボット		精密金属加工技術	自動制御技術	センシング技術		組込みソフトウェア技術			
	人体代替部材	精密繊維加工技術	精密金属加工技術	レーザ表面処理技術 金属光造形複合加工技術		生体適合性コーティング処理				① 医梅田目
	医療器具・機器		生体適合性金属材料開発技術 精密金属加工技術	レーザ微細加工技術 精密プレス加工技術						⑪ 医療用具
	位置検知システム	eーテキスタイル技術			センシング技術		組込みソフトウェア技術		[
	健康管理システム	eーテキスタイル技術	精密金属加工技術		センシング技術		組込みソフトウェア技術		1	⑫ 介護用品
健康長寿・	介護ロボット	機能性繊維材料創成加工技術	精密金属加工技術	自動制御技術	センシング技術	~ 殺菌技術	組込みソフトウェア技術		1	
快適生活	パーソナルスポーツウェア	機能性繊維材料創成加工技術				機能性表面処理技術			[
	食器·住宅内装材			レーザ加工技術		プラスチック材料加工技術		機能性和紙 高耐久性漆器		⑬ 快適生活製品
	防火服・防火カーテン	機能性繊維材料創成加工技術								
	高付加価値食品							食品加工技術		① 健康主力全口等
	医薬品・化粧品・バイオ関連材料							食品加工技術		⑭ 健康志向食品等

4 技術開発事業化ロードマップ

① 軽量化材料

本県が誇る炭素繊維の開繊技術を用い、軽量化により燃費向上が期待される航空機エンジンや、今後急速に市場拡大が見込まれる電気自動車や燃料電池自動車の軽量化に必要不可欠な炭素繊維強化複合材料の製品化を目指すとともに、金属加工技術や精密加工技術を活かした軽量部品の開発を進める。

年度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
		炭素繊維	<mark>強化複合材料製造</mark>	b技術開発						
	技術開発			大型成形加	口工技術開発				5	
			航空機	用エンジン部材				11/1/28		
航空機用部材	用途開発			,,,,			航空機用1次構造	上 <mark>告材(胴体、翼等)</mark>		
	事業化技術開発					新形態のシー	│ │ <mark>─</mark> ト開発、シート製	造速度の更なる	 高速化、低コスト(と技術の開発
	(売上目標)									500億円
	+士 /共 日 2%	炭素繊維	L <mark>做化複合材料製造</mark>	L b技術開発		Hzwaoo				
	技術開発			大型成形加	工技術開発					
	用途開発			自動車用外板	」 語材、軽量発泡	材等との併用部材の	 (ドアパネル等)			
自動車用部材	用途開発					燃料電池自動	車用燃料タンク			
	事業化技術開発					新形態のシー	ート開発、シート製	造速度の更なる	高速化、低コスト化	比技術の開発
	(売上目標)									300億円
	技術開発	中空		タンねじ・リベット	、 <mark>、炭素繊維複合林</mark>	才部品			- @ •	
	T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				小型機器	用軽量部品				
軽量部品	用途開発					次世代自動車用軽量部品			O el	
	事業化技術開発							低コスト化	技術の開発	
	(売上目標)									60億円

② 省エネ機器

低炭素化社会の実現に向けた省エネルギー、新エネルギー機器の開発に必要不可欠なことから、今後順調な市場拡大が見込まれるパワーデバイス^{※1}の製造に必要な技術開発を進めるとともに、2015年以降、急速に普及が見込まれる電気自動車、ハイブリッド電気自動車に必要な高性能モーターの開発を行う。

年度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発	GaN ^{※2}	等、次世代パワー	· <mark>デバイス製造技術</mark>	<mark>特の開発</mark>					
次世代パワーデ バイス	用途開発			スマートグリッド用	インバータ、エア=	コンのインバータ化((<mark>中国、欧米)、AC-</mark>	-DCコンバータ ^{※3} 、	自動車用モーター	el.s
	事業化技術開発						量産化	、低コスト化技術	の開発	
	(売上目標)									10億円
	技術開発	小型、	高性能モーターの	の開発	茶小 全层:	を使用しないモーク	5 の問 <i></i> 祭			
					布ツ並属	を使用しないと 。	メーの開発			
			電気自動車、バ	イブリッド電気自						
電気自動車用 モーター	用途開発				次世代	た自動車用車載モ		ティー、電動自転	車用モーター	
	事業化技術開発						量産化、低コス	ト化技術の開発		
	(売上目標)	ら 生 1 分 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ナッキロ 60.45	 	ᄼᆖᄧᅔᅈᄝᅛᄙᄛ		(\$.	# / ~ +\	b + kk 即 <i>l = l</i>	70億円

^{※1} パワーデバイス:電力の変換や制御を行う半導体であり、一般的な半導体に比べて電流容量や耐電圧が大きい。低発熱、低損失化が進んでおり、省エネ機器に使用される。

^{※2} GaN:ガリウムナイトライド(窒化ガリウム)。次世代パワーデバイスの素材の一つ。

^{※3} AC-DCコンバータ:電源電流を交流から直流へ変換するための装置

③ 太陽光発電

県内で培われた繊維技術に、太陽電池や各種センサなどのエレクトロニクス技術を融合し、災害時等に役立つ新たなテキスタイル製品開発を行うとともに、再生可能エネルギーへの関心が高まる中で、県内企業が有する技術を活かし、より低価格な有機系太陽電池の開発を進め、拡大・普及が見込まれる太陽光発電分野における新たな市場創出を目指す。

年 度製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発	太陽電	池糸、太陽電池テ	・キスタイル製造技	技術開発					
					テント、	内装材				
太陽光発電テキ スタイル	用途開発						建材、イ		ポーツ用品、交通板	幾関
	事業化技術開発						量産化、低コス	ト化技術の開発		
	(売上目標)									50億円
	技術開発		太	、 陽電池電極の開	発					
	用途開発					建材、イン				
有機系太陽電池										
	事業化技術開発							量産化、低コス	ト化技術の開発	
	(売上目標)									10億円

4 燃料電池

燃料電池^{※1}発電技術の実用化・普及に不可欠なコスト低減、高効率化、長寿命化を図るため、安価なステンレス素材に耐食性・導電性に優れた皮膜をコートした、低コストで耐久性のあるセパレータ^{※2}などの部品の開発を進める。

年度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発	<u>(耐久性</u> 金属製セパレータ	の成形技術の開発パクト化)	上技術の開発	セパレータ					
, *3	用途開発		家庭	用固体高分子形	 	<u>√</u> —9			Names to the second sec	
エネファーム ^{※3}	用逐用 完			家庭用固体	<mark>本高分子形燃料電</mark>	<u>電池の部品(セパレ</u>	/一タ以外)		エネフ	ァーム
	事業化技術開発					量産化、低コス	ト化技術の開発 			
	(売上目標)									15億円

- ※1 燃料電池:都市ガスやLPガスなどから取り出した水素と空気中の酸素を化学反応させることにより発電するシステム
- ※2 セパレータ:燃料電池内にある板状の部品。燃料ガスや空気を遮断したり、ガスが流れる流路を作りこんで燃料ガスや空気を送り込む機能を担う。
- ※3 エネファーム:家庭用燃料電池コージェネレーションシステムの統一名称。燃料電池の発電機能とともに、発電時の排熱を給湯に利用する機能を持つ自家発電・給湯設備

5 非石油系燃料

化石燃料資源の代替として利用することでCO2排出が抑制でき、環境調和型の新エネルギーとして期待されているバイオマス(木材、草、海藻など)を 原料とした、バイオ燃料の開発を行う。また、一酸化炭素と水素から液体燃料を合成する装置の開発を進める。

年度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発	バイオマスの高	対率エネルギー	変換技術の開発 「						
バイオ燃料	用途開発			バイオ燃	料(植物系バイオ [・]	マス由来)				
	事業化技術開発					高効率・	<mark>化、低コスト化技術</mark>	野の開発		
	(売上目標)									10億円
	技術開発			Lさせる触媒の開発 +(温度制御やガス						
FT合成 ^{※1} 燃料	用途開発						料合成装置			and bet
	事業化技術開発								大型プラントの開発	ž
	(売上目標)	B. 61.111								15億円

^{※1} FT(フィッシャー・トロプシュ)合成:触媒反応により、水素などの混合ガスから液体炭化水素を合成すること。

⑥ 二次電池

家庭や密集度の高くない地域用の分散型蓄電池については、格段の長寿命化と安全化を高容量と同時に実現することが求められている。大容量で高 出力特性を有する材料をベースに表面改質技術を施し、信頼性と安全性を兼ね備えた電池用電極材料を製造し、フィールドテスト可能な大型蓄電池を作 製する。

年度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発		安全性[<mark>句上、長寿命化技</mark> ⊤	<mark>術の開発</mark> □	T				
移動体用リチウ ム電池	用途開発			<u>│</u> 移動体用リチウ <i>↓</i>	」 <mark>∡イオン電池用材料</mark>	<u> </u> 		(FABUUSO)		
ム电心								8		
	事業化技術開発					量産化、低	<mark>コスト化技術の開</mark>	発 		
	技術開発		安全性向上、長	」 <mark>寿命化技術の開</mark> 务						
定置型大型蓄電										
池	用途開発		定置	置型大型蓄電池用 「	材料 					
	事業化技術開発					L と、低コスト化技術	<u> </u> の開発			
	上記2製品合計									
	(売上目標)									600億円

7 植物工場

葉菜類の栽培に関して、栽培条件やLEDを主とする光源を活用し、施設園芸などでの高機能化、省力化を目指すとともに、太陽光併用型の植物工場に おけるエネルギー負荷の低減を図る目的で、地中熱源を活用した温度制御システムの実用化を目指す。

年 度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発		イオンビー.	にートポンプ開発 ム育種研究 LED補光、CO2施						
次世代植物工場	用途開発			高機能性新	新品種開発 環境制御	J装置(LED補光、C	O2施肥)			
	事業化技術開発					エネルギー型種苗 D補光、CO2施肥、				
	(売上目標)									10億円

8 スマート技術

スマートコミュニティ^{※1}の構成技術として、電気自動車用非接触給電装置の部品、スマート家電製品、オンデマンド交通システム^{※2}の開発を進める。また、クラウドコンピューティング^{※3}のプラットフォーム(コンピュータのソフトウェアが動作するための土台(基盤) として機能する部分)の開発を行う。

年 度製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発	情報通信技術、名	給電効率の向」 トシステムの開発					' スマートコミュニティ		
スマートコミュニ	用途開発		電気自動車スマート家電製品	車用非接触給電勢	長置の部品				 オンデマンド交通シ	ステム
ティシステム			オンデマンド							
	事業化技術開発			量産化	、低コスト化技術	の開発				
	(売上目標)									40億円
	(元上日標) 大術開発		仮た	退化ソフト技術の関					クラウドコンピ	ューティング
				セキ:	<mark>ュリティ</mark> 関連技術の 	D開発 				
クラウド関連製品	用途開発			 	 <mark>+通プラットフォー</mark> 	<u> </u>				
	事業化技術開発				ار	↑ 散処理技術の開	 発			
	(売上目標)									35億円

^{※1} スマートコミュニティ:街全体の電力の有効利用や再生可能エネルギーの活用などを、都市の交通システムや住民のライフスタイル変革まで複合的に組み合わせた社会システム

^{※2} オンデマンド交通システム:複数の利用者の出発・到着時間帯、乗車場所等を順次受け付け、それぞれの要望(デマンド)に応じた乗合の運行経路をコンピュータが作成する仕組み

^{※3} クラウドコンピューティング:インターネットの世界を雲に見立て、ネット経由で様々なソフトウェアやデータ処理サービスを使うこと。

⑨ 資源リサイクル

循環型社会の形成に向け、繊維や化学的技術を活用した希少材料回収技術の開発や、バイオプラスチックやリサイクル炭素繊維を用いた製品加工技 術の開発を行い、地域産業の活性化を図る。

年度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発		属イオン吸着布の と学分離手法の開							
再利用希少材料	用途開発			希少金属回収						
	事業化技術開発				量産機	の開発				
	(売上目標)									15億円
	技術開発			バイオプラスチック(レ炭素繊維加工技						
バイオ系材料	用途開発					宅用建材·擬木製 載布	品			
	事業化技術開発		低=	コスト製造技術の開	開発					
	(売上目標)									90億円

⑩ 原子力関連製品

原子力立地県として、県内技術を活かした通気性、柔軟性に優れた作業用防護ウェアの開発やレーザ除染・レーザ切断技術開発、耐放射線ロボット技 術等の開発を行い、原子力の安全性強化を図る。

年度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発	通気性、柔軟性に	優れた製品の開発	The second secon						
原子力防護ウェ ア	用途開発		原子力	<mark>発電作業用服•</mark> 革	化·手袋					
	事業化技術開発			量産化、低コス	ト化技術の開発					
	(売上目標)									10億円
	技術開発	レー	ザ切断・レーザ除:	染技術の開発、原	 <mark>子炉解体技術の</mark> 	開発				15
廃炉関連装置	用途開発			レーザ	切断装置・レーザ	除染装置、解体シ	ステム			
	事業化技術開発					信頼性向	上、低コスト化技			
	(売上目標)									10億円
	技術開発		耐放射線ロボット	技術の開発、遠隔	 					
ロボット	用途開発				搬送・監視・解	本作業・重量物運		シストスーツ)等		
	事業化技術開発							信頼性向	上、低コスト化技	術の開発
	(売上目標)									30億円

① 医療用具

今後成長が見込まれる医療機器分野の市場展開を図るため、県内企業がこれまで培ってきた繊維、眼鏡、機械等の高度な基盤技術の特色を生かし、 医療側ニーズと連携して医療用具の開発を進める。

年 度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発		代替部材成形	杉技術、殺菌·抗菌	直技術の開発					
	用途開発			λT	 	· · · · · · · · · · · · · · · · · · ·	ラ 人工皮膚等の		- J	
人体代替部材	加 速			人工	- 月、八二四位、月		5、八二人间 寸 0			
	事業化技術開発		臨床実験、品質安定化、低コスト化技術の開発							
	 (売上目標)									30億円
	技術開発	チタン等金属材料の精密加工技術、細線化技術、異種金属接合技術、評価技術の開発								
医療器具·機器	用途開発			手行	術用、治療用の器	操械部品の開	発			
	事業化技術開発					臨床実験、品質	質安定化、低コスト	化技術の開発		
	(売上目標)									50億円

12 介護用品

高齢者等の生活の質の向上、介護や福祉等の現場の負担軽減を図るため、病院・介護施設等における患者の位置情報や健康状態などを把握するシステムを構築するとともに、介護ロボット構成部品の開発を進める。

年 度製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発	位置情報認	<mark>!識技術、情報通ſ</mark>	│ <mark>言技術、安全制御</mark> │	 <mark>技術の開発</mark> 					
位置検知システ ム	用途開発				は者、車いす等の(<mark>立置検知技術の開</mark>	<mark>]発</mark>			
	事業化技術開発				量産化、品質安定 	化技術の開発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
	(売上目標)									10億円
	技術開発	繊維	 <mark>素材への電子基</mark> 	│ 坂 <mark>の埋込み技術の</mark> │	D開発					
健康管理システ	用途開発				電子基板埋込	み患者衣の開発				
	事業化技術開発					低コスト化、量産化、品質安定化技術の開発				
	(売上目標)									10億円
	技術開発		ロボット構成	部品の開発						
介護ロボット	用途開発			リハビリ、	生活支援(家事支	援)、介護向けロボ	シトの開発			
	事業化技術開発						低コスト化	、安全性、小型化	技術の開発	
	(売上目標)									10億円

③ 快適生活製品

アスリート用衣類、高機能性食器・住宅内装材、防火性や非熱伝導性を備えた衣類・カーテンなど、健康で快適な生活を実現する、付加価値の高い衣・ 住関連製品の開発を進める。

年度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術開発		快適機能テキ	 スタイルの開発 						
パーソナルス ポーツウェア	用途開発				アスリート用	衣類の開発				
	事業化技術開発				品質安定化技術の開発					
	(売上目標)									100億円
	技術開発		軽量・断熱性プ	 ラスチックの開発 						
食器·住宅内装 材	用途開発				高機能性食器・住	主宅内装材の開発				
11/1	事業化技術開発					低コスト化、高機能化、品質安定化技術の開発				
	(売上目標)									70億円
	技術開発		極限環境テキ	スタイルの開発						
防火服・防火カー テン	用途開発			防火性	性、非熱伝導性の 	衣類、カーテン等(の開発			
	事業化技術開発					量産	化、低コスト化、品	品質安定化技術 <i>の</i>	開発	
	(売上目標)									10億円

14 健康志向食品等

少子高齢化や健康志向が進展する中で、地域の農林水産物を用い、高齢者や要介護者などに適した食品や健康増進に寄与する付加価値の高い食品 開発を進めるとともに、食品に含まれる成分を活かした化粧品、医薬品など新用途の開拓を進める。

年度 製品名		2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	2016 (H28)	2017 (H29)	2018 (H30)	2019 (H31)	2020 (H32)
	技術•用途開発		退 彦 只 を田	いた特別保健田1	全国 学 素機能會	品、高齢者向けか	「工食品の開発」	6次産業化による	商品の開発	
	加速研光		来産品で ル	10.7~1寸が1不1座/円)	及 加、 个发版形成		工及品の開光、		同品の研究	
高付加価値食品	声类 化针织眼及		か茶		-	5. 故变化 克纳连	化 克帕曼化 低	コストル共体の問	74	
	事業化技術開発		**		Ē	<mark>高効率化、高純度化</mark> 	C、高収重化、低	コスト化技術の開	光	
	(売上目標)									10億円
	技術・用途開発		県産品を活用し	た化粧品の開発						
						県産品を用いた医薬品、バイオ関連材料の開発				
医薬品•化粧品•										
バイオ関連材料					高効率化、高純度化、高収量化、低コスト化技術の開発					
							36			
	(売上目標)									50億円

(参考) 技術開発事業化ロードマップの検討経過

本県の企業、大学、産業支援機関、行政等で構成する「新たな価値提案産業創出チーム」で検討

(1)チーム会議開催実績

口		年月日	内 容		
平成23年度	第1回	平成23年11月21日	新たな価値提案産業創出チーム創設		
	第2回	平成24年 3月 9日	ロードマップ作成を決定		
	第1回	平成24年 6月18日	ロードマップ対象項目について検討		
平成24年度	第2回	平成24年 8月22日	ロードマップ対象項目ごとの具体案について検討		
	第3回	平成24年 9月26日	ロードマップ最終案について検討		

(2) チーム員等名簿(平成25年3月1日時点)

区分	氏 名	所属・役職
チームリーダー	米沢 晋	福井大学 産学官連携本部長
	岩堀 一夫	㈱シャルマン 取締役専務執行役員
	加藤 敦	アイシン・エィ・ダブリュ工業㈱ 取締役
	清川 肇	清川メッキ工業㈱ 代表取締役社長
ー チーム員	野村 正和	セーレン㈱ 取締役専務執行役員
リケーム貝	羽木 秀樹	福井工業大学 産学共同研究センター長
	花山 優	花山工業㈱ 代表取締役社長
	山田 賢一	福井県 産業労働部長
	吉田 雅穂	福井工業高等専門学校 地域連携テクノセンター長
	岩永 弘行	(財) 若狭湾エネルギー研究センター 専務理事
オブザーバー	笠嶋 文夫	(公財) ふくい産業支援センター 常務理事 (兼 技術開発部長)
	勝木 一雄	福井県 工業技術センター所長
	小林 恭一	福井県 食品加工研究所長

(区分ごと氏名50音順、敬称略)

福井県技術開発事業化ロードマップ

平成25年3月

【発行】

福井県(産業労働部地域産業・技術振興課)

〒910-8580 福井市大手3丁目17番1号

TEL 0776-20-0374

FAX 0776-20-0646

Eメール chisangi@pref.fukui.lg.jp

URL http://www.pref.fukui.lg.jp/doc/chisangi/sangakukan.html