[平成13年度 普及に移す技術]

マルチや葉面散布による果実の機能性成分の強化

「要約]

スモモ、ブドウ、リンゴの樹冠下にマルチを敷設すると、機能性成分であるポリフェノールの含量を 4~40%増加させることができます。着色促進効果のある葉面散布剤を処理すると、9~59%増加させることができます。また、マルチと葉面散布を併用すると、それぞれ単独の処理よりもさらに効果が高まり、17~63%増加させることができます。

福井県農業試験場・果樹研究グループ			契機	研	要請元	農業試験場	
部会名	果樹	専門	栽培	対象	果樹類	分類	指導

「背景・ねらい)

近年、消費者の健康志向の高まりから、果実の機能性食品としての役割に関心が持たれています。そこで、果実の機能性成分であるポリフェノールを強化することで、付加価値の高い果実生産と、より健康に良い果実を消費者に提供することを目的として、マルチや着色促進効果のある葉面散布剤のポリフェノール強化効果を検討します。

「成果の内容・特徴]

スモモ、ブドウ、リンゴなどの赤く色づく果実には、着色しないナシなどよりも多くのポリフェノールが含まれていことが分かりました。また、同じ樹種でも品種によって含量に差が見られました(表1)。

収穫 1ヶ月前からの樹冠下の白色マルチ敷設は、果実のポリフェノール含量をスモモで40%、ブドウで33%、リンゴで4%程度増加させることができます(表2)。

着色促進効果のある葉面散布剤の処理は、スモモのコリン液剤で 59%、リンゴの MCPB 乳剤で 9%、ブドウのタンパク質エキスで 15%、乳酸菌代謝物質で 21%程度増加させることができます。スモモ、リンゴでは、マルチの敷設よりも葉面散布でポリフェノールの強化効果が高くなります (表3)。

マルチと葉面散布の併用は、それぞれ単独の処理よりもポリフェノールの強化効果が高く、無処理に比べて、スモモで 63%、リンゴで 17%程度増加させることができます(表 4)。

[成果の活用面・留意点]

機能性成分の強化効果の高い栽培法に取り組むことで、高付加価値の果実生産が期待できるとともに、消費者には、健康に良い機能性成分を多く含んだ果物を提供できます。

マルチや葉面散布処理で、収穫期が若干早くなります。

マルチや葉面散布の効果を高めるため、樹冠内によく日が差すように枝管理を行う必要があります。

「具体的データ]

表 1 樹種、品種間の全ポリフェノール含量比較(1998)

樹種	品種	全ポリフェノール含量 (mg/100g可食部)
ナシ	幸水 豊水	15 20
リンゴ	千秋 さんさ つがる	40 88 65
ブドウ	巨峰 ピオーネ	49 51
スモモ	ソルダム 大石早生	292 224

表 2 マルチによるポリフェノールの強化効果(2000)

		ポリフェノール含量 ^z				
樹種	品種	(mg/100g可食部)				
	_	マルチ ^y	無処理			
スモモ ブドウ リンゴ	大石早生 巨峰 千秋	150 (40%増) 52 (33%増) 24 (4%増)	107 39 23			

z:()は、無処理に対する増加割合。

y:マルチは、収穫 1ヶ月前から樹冠下に敷設した。

表3 葉面散布によるポリフェノール強化効果(2000)

			ポリフェノール含量 ^z		 散布条件			
樹種 品種		葉面散布剤	(mg/100g可食部)		希釈倍率	散布量	散布時期	
			葉面散布	無処理	(倍)	(ポ/10a)		
スモモ	大石早生	コリン液剤	170 (59%増)	107	600	300	収穫 1ヶ月前、2週前	
リンゴ	千秋	MCPB乳剤	25 (9%増)	23	3,000	300	収穫 1ヶ月前	
ブドウ	巨峰	タンパク質エキス 乳酸菌代謝物質	45 (15%増) 47 (21%増)	39 39	1,000 800	300 300	収穫 1ヶ月前、3週前、2週前 収穫 1ヶ月前、3週前、2週前	

z:()は、無処理に対する増加割合。

表 4 マルチ、葉面散布の併用によるポリフェノールの強化効果(2000)

 樹種	品種	ポリフェノール含量 ^z (mg/100g可食部)				
		マルチ + 葉面散布 [\]	無処理			
スモモ	大石早生	174 (63%増)	107			
リンゴ	千秋	27 (17%増)	23			

z:()は、無処理に対する増加割合。

y:処理方法は、表 2,3の通り。