[平成 15 年度普及に移しうる技術]

[普及に移す技術名] 高温年次におけるコシヒカリの品質向上のための移植時期 [要約] 移植時期を5月中旬に遅らせ、出穂期を8月3日以降とし、出穂後15日間の平均 気温を28 以下で登熟させることにより、乳白粒の発生を約1/2に軽減し、玄米品質を向上 することができる。

[キーワード]コシヒカリ、移植時期、収量、乳白粒、品質

[担当] 福井農試・作物経営部・作物研究グループ

[連絡先] 電話 0776-54-5100 電子メール yasuhiro_yamaguchi@fklab.fukui.fukui.jp

[分類] 普及

[背景・ねらい]

近年、本県産コシヒカリは生育期間の気温の上昇とともに、出穂期が早まり、高温登熟条件となりやすく、品質が低下しやすい状態にある。そこで、移植時期を変え、出穂期を遅らせることによる品質向上効果について検討した。

[技術の内容・特徴]

- 1.4月末から約10日おきに移植時期を変えることにより、出穂期は4~6日ずつ遅れる。稈長は移植時期が遅いものほど長い傾向にあり、5月末植のもので倒伏が大きい(表1)。
- 2. 収量構成要素では、移植時期が早いほど穂数や総籾数が多くなるが、登熟歩合が低下することから、5月18日移植までの収量差はない(表1)。
- 3. 品質は移植時期が遅いほど乳白粒の発生が抑えられ、完全米の割合が高まる。図1に示すとおり出穂後15日間の平均気温が28を上回ると,乳白粒の発生率が高まり、完全米の割合が低くなる傾向にある。また、玄米窒素濃度や食味官能評価の移植時期間差は小さい(表1)。
- 5. 最近 5年間の平均気温で見ると、出穂後 15日間の平均気温を 28 以下とするためは、出穂期を 8月 3日以降とする必要がある(図3)。

[技術の活用面・留意点]

- 1.移植時期を遅らせることで、気温の上昇とともに節間伸長期の地力発現量が増えることから、 基肥窒素施肥量の減量や倒伏軽減剤の使用等による倒伏対策、また、イネハモグリバエ及び いもち病対策が必要である。
- 2.室素施肥量は、基肥については4月27日植で3.6kg/10a、5月8日植で3.1kg/10a、5月18日植で2.2kg/10a、5月29植で1.4kg/10aとし、穂肥については各移植時期とも2+1kg/10aとした。

[具体的データ]

表1 移植時期の違いと収量・品質(1999-2002、稈長1999、2001、2002)

移植日	幼穂形成期	出穂期	成熟期	出穂後15日間 の平均気温()	稈長 (cm)	倒伏程度	玄米窒素濃度 (%)
4.27	7. 3	7.25	8.30	28.9	88.7	1.8	1.22
5. 8	7. 7	7.29	9. 3	28.6	90.2	1.8	1.24
5.18	7.12	8. 4	9.11	28.1	92.4	1.8	1.22
5.29	7.19	8. 9	9.17	27.1	93.8	3.1	1.23

移植日	穂数 (本/㎡)	総籾数 (100粒/㎡)	登熟步合 (%)	千粒重 (g)	収量 (kg/10a)	完全米 (%)	乳白粒 (%)
4.27	415	340	86.8	21.7	619	79.6	10.6
5. 8	394	331	86.6	22.2	617	81.3	9.8
5.18	391	318	89.5	21.9	619	84.2	4.2
5.29	357	298	88.9	22.6	593	87.0	3.4

30

20

10

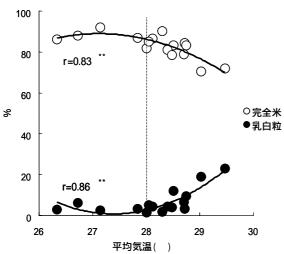
0

-10

CGR(g/m²/day)

₁0.9

0.6


0.3

□穂

□稈·葉鞘 ■枯葉

□生葉

〇1籾

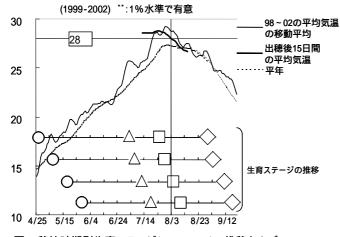


図3 移植時期別生育ステージ(1999-2002)の推移および

5年間の平均気温(1998-2002)とその出穂後15日間の平均気温

(注) 移植日、 幼穂形成期、 出穂期、 :成熟期