三方五湖自然再生事業
三方湖ヒシ対策ガイドライン

平成28年3月

三方五湖自然再生協議会外来生物等対策部会
三方五湖自然再生事業三方湖ヒシ対策ガイドライン

= 目次 =

1 はじめに ... 3

2 三方湖におけるヒシ繁茂の状況と対策 4
2.1 ヒシの生育面積の推移 .. 4
2.2 ヒシの繁茂と生態系・産業・生活環境への影響 6
 (1) 自然環境（水質・生物）への影響 6
 (2) 渔業への影響 ... 10
 (3) 生活環境への影響 .. 10
 (4) ヒシの繁茂による生態系・産業・生活環境への影響まとめ 11
2.3 これまで講じられた取組 ... 12

3 三方湖におけるヒシの管理計画 13
3.1 ヒシ管理に関わるゾーニング計画 13
 (1) ゾーニングの基本方針 .. 13
 (2) ゾーニング .. 13
3.2 ヒシの刈り取り方法 .. 15
 (1) ヒシ刈り取りの基本方針 15
 (2) ヒシ刈り取りの方法 .. 16
 (3) ヒシ刈り取り試験 .. 19
3.3 刈り取ったヒシの活用計画（堆肥化） 26
3.4 ヒシ管理のモニタリング計画 29
3.5 三方湖におけるヒシの順応的管理 34

4 参考：三方五湖自然再生事業実施計画抜粋（三方湖ヒシ対策） 35
 (1) 事業実施者の名称及び実施者の属する協議会.................. 35
 (2) 事業実施区域 .. 35
 1) 事業実施区域 .. 35
 2) 対象となる区域の現状 36
 3) 対象となる区域の課題 37
 (3) 事業の目的と意義 .. 38
 (4) 事業の実施方法 .. 38
 1) モニタリングの実施 ... 38
 2) ヒシの適正な管理方法の開発 38
 3) ヒシの利用（ヒシの堆肥化にむけた研究） 38
 (5) 事業のスケジュール ... 39
1 はじめに

本ガイドラインは、三方湖におけるヒシの管理計画をとりまとめたものである。三方五湖の最上流部に位置する三方湖においては、近年、ヒシが湖面をほぼ埋め尽くすほどに分布拡大してきた。

これまでに経験のないほどに広がるヒシ帯からは、漁業のための航路阻害や湖辺に堆積するヒシの枯死体から発せられる悪臭などの社会的な問題が発生するほか、ヒシ帯における水中の貧酸素による生態系への悪影響も懸念されてきた。一方で、ヒシ帯は、多様な水生生物の生息空間にもなりえることから、湖の生態系機能の維持のために必要であるとの見方もある。

そこで、三方湖においては、平成25年3月にとりまとめた三方五湖自然再生事業実施計画をもとに、試験的なヒシ刈り取りが行われており、また、そのモニタリングも実施されてきた。本計画書では、これまでの試験的作業とモニタリング、地域住民への聞き取り調査などから、急速に分布が広がるヒシについて、その存在の意味を自然環境の視点及び社会環境の視点の双方から評価し、今後のヒシの適切な管理手法について検討したものである。

【三方五湖自然再生協議会外来生物等対策部会 構成員】

部会長：富永修（福井県立大学）
鳥浜漁業協同組合、海山漁業協同組合、南西郷漁業協同組合、ハスプロジェクト推進協議会、(NPO)世界に誇るラムサール湿地三方五湖を育む会、富永修（福井県立大学教授）、吉田丈人（東京大学准教授）、西廣淳（東邦大学准教授）、西原昇吾（中央大学）、加藤義和（京都大学）、福井県、若狭町、美浜町

※事務局：若狭町（歴史文化課）
2 三方湖におけるヒシ繁茂の状況と対策

2.1 ヒシの生育面積の推移

ヒシの生育面積は低高度で撮影した航空写真を用いることで正確に把握することができ、また、航空写真が存在しない年代についても、人工衛星の画像を活用すれば分布範囲を推定することができる。これらリモートセンシングデータを組み合わせて、2003年（平成15年）以降のヒシ占有面積の変化を示すと以下のようになる。

三方湖におけるヒシ占有面積割合の変化（2003-2014）

三方湖におけるヒシの生育面積は、年変動はありつつも2010年（平成22年）のピーク以降は減少傾向にある。この減少には、刈り取り管理のほか、実生定着期における嵐による擾乱や水月湖からの汽水の流入の程度などが影響していると考えられる。

減少傾向にあるとはいえ、ヒシ群落は現在でも湖面の約30%を占めており、航行障害などの問題があることは事実である。また、次の空中写真からわかるように、過去には沿岸の湾状の場所に限って発達していたヒシ群落が、現在では湖の中央部でも生育するようになっている。
図 三方湖の空中写真（1963 年および 2010 年〜2015 年）
1963 年は国土地理院による空中写真。2010〜2015 年はスカイマップ（株）による撮影
2.2 ヒシの繁茂と生態系・産業・生活環境への影響

（1）自然環境（水質・生物）への影響

上記の自然再生事業実施計画書では、ヒシ繁茂が水質や生物に与える影響が述べられ、湖沼生態系の全体に与える影響がまとめられている。一方、実際の湖沼におけるヒシの繁茂は不均一でまばらであることもあり、ヒシが繁茂していない開放水域とヒシ帯とが複雑な配置となっている。また、ヒシ群落の密度（単位面積あたりの被度）もばらつきがあり、湖面がびしょとヒシに覆われることもある。ヒシ密度が低くまばらに繁茂することもある。このようなヒシ繁茂の詳細が、水質と生物にどのような影響を与えるかについては、既存の文献では知ることができないため、新たな調査が2013年（平成25年）と2014年（平成26年）に実施された。この調査では、ヒシ帯と開放水域を横断するようにトランセクトが設けられ、そのトランセクトにそって水質と水生生物が観測された。複数の場所にトランセクトを設けることで、開放水面の規模とヒシ被度の影響を評価することが可能となった。その主要な結果を紹介する。

図.トランセクト調査の概要。2013年は、開放水域の規模が小さい場所と大きい場所の2カ所で、開放水域からヒシ帯を横断するトランセクトを設けた。2014年は、ヒシ被度が小さい場所から高い場所を横断するトランセクトを設けた。

水質のうち、植物プランクトンの量を指標するクロロフィル濃度と溶存酸素濃度に注目した。高いクロロフィル濃度とアオコ（植物プランクトンの集塊）の発生は関連しており、溶存酸素濃度は多くの水生生物にとって生存に重要な環境要因である。クロロフィル濃度も溶存酸素濃度も多項目水質計を利用して、現場で迅速に測定することができる。

植物プランクトンの量を指標するクロロフィル濃度については、ヒシ帯より開放水域で高くなる傾向は、既存の研究からの予測と一致するが、開放水域の規模が大きいほどクロロフィル濃度が高くなることが新たにわかった。一方、ヒシ被度の大小では、ヒシ帯内のクロロフィル濃度には明らかに違いが見られなかった。
図. クロロフィル濃度へのヒシ帯の影響。
開放水域ではヒシ帯より高く、開放水域の規模が大きいとその傾向はより顕著であった。一方、ヒシ被度の大小では変わらなかった。

溶存酸素濃度（DO）については、開放水域の規模が大きいと、開放水域だけでなくヒシ帯内のDOも高かったが、開放水域が小さい場所ではヒシ帯でも開放水域でもDOが低かった。また、ヒシ被度は小さい方が、ヒシ帯内であってもDOが高くなることがわかった。

図. 溶存酸素濃度（DO）へのヒシ帯の影響。
開放水域の規模が大きいヒシ帯内部でも高いが、開放水域の規模が小さいとヒシ帯だけでなく開放水域でも低かった。また、ヒシ被度は小さい方がDOは高かった。

水生生物のうち、動物プランクトンについては、その総個体数はヒシ帯と開放水域で変わらず、ヒシ被度の影響も見られなかった。一方、種の構成はヒシ帯と開放水域では少し異なっており、ヒシ帯内には比較的大きな動物プランクトンである枝角類やカイムシ類が多く、開放水域ではカイアシ類のノープリウス幼生が多かった。
個体数の総数については、ヒシ帯の有無や被度の影響は検出されなかった。一方、種組成についてはヒシ帯と開放水域で少し異なり、ヒシ帯内には枝角類やカイムシ類が比較的多かった。

水面近くの表層にいる水生生物（表層生物）については、開放水域では採集されなかったが、ヒシ帯の内部に行くほど多くの生物が見られた。特に、イトトンボの幼虫、ハムシ、エビなどが多かった。またこの傾向は、開放水域の規模には影響されなかった。一方、ヒシ被度の大小では総個体数はほとんど変わらないものの、ハムシの齢構成が異なっていた。

底生生物（ベントス）については、2013年はヒシ帯でもその近くの開放水域でも底生生物は観測されなかった。2014年は、ユスリカの幼虫が見られたが、ヒシ被度の大小では個体数に違いがなかった。
個体数(個体/m²)

トランセクト
開放水域
ヒシ帯
ヒシ被度大
ヒシ被度小
ヒシ帯
開放水域
トランセクト

図. 底生生物へのヒシ帯の影響.
2013年は、開放水域でもヒシ帯でも底生生物が観測されなかった。2014年はユスリカ幼虫がいたが、ヒシ被度の大小で個体数に違いがなかった。

以上の結果をまとめたのが、次の表である。水質と水生生物では、ヒシ帯の有無、ヒシ被度の大小、開放水域の規模の影響が異なったことから、ヒシ帯の詳細な分布の状況によって水質と水生生物への影響が変化することがわかった。ヒシ繁茂の管理においては、自然環境の何に注目するかによって、刈り取って水面を開放する規模や、刈り取りの強度によって調節できるヒシ被度の設定が異なることが予想される。

<table>
<thead>
<tr>
<th>調査項目</th>
<th>開放水域とヒシ帯の違い</th>
<th>ヒシ被度の影響</th>
<th>開放水域規模の影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>水質</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クロロフィル濃度</td>
<td>開放水域＞ヒシ</td>
<td>－</td>
<td>小＜大</td>
</tr>
<tr>
<td>溶存酸素濃度</td>
<td>開放水域＞ヒシ</td>
<td>小＞大</td>
<td>小＜大</td>
</tr>
<tr>
<td>水生生物</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>動物プランクトン</td>
<td>総個体数は変わらず</td>
<td>種組成は異なる</td>
<td>－</td>
</tr>
<tr>
<td>表層生物</td>
<td>ヒシ帯内にのみ出現</td>
<td>種組成は異なる</td>
<td>－</td>
</tr>
<tr>
<td>ベントス</td>
<td>－</td>
<td>－</td>
<td>－</td>
</tr>
</tbody>
</table>
(2) 漁業への影響

ヒシ帯がエビなどの生育場所になる。また、アオコの発生を抑え、魚やエビなどの生息環境の悪化を抑制する。一方、繁茂したヒシがうなぎ漁の筒や、はえ縄漁の仕掛けに絡まり労力を費やす。また、漁船のプロペラに絡まるなど航行に支障をきたす。大量に繁茂した場合は、水中の酸素濃度が低くなるため、魚類などの水生動物の生存に悪影響を与える。

(3) 生活環境への影響

ヒシの葉を植食するジュンサイハムシが増加し住宅地まで飛来した場合、洗濯物や家の壁に付着する。また、大量に繁茂したヒシが腐敗すると有機物を発生しながら沈澱し、悪臭や水質悪化の原因となる。
（4）ヒシの繁茂による生態系・産業・生活環境への影響まとめ

適度に繁茂し枯死後に分解されている限り、ヒシは栄養塩を吸収するため富栄養化を抑える働きがある。一方、大量に繁茂した場合、水質と水生生物の種構成が変化する。漁業面では、エビなどがヒシ帯を生息場所とする一方、ヒシの大量繁茂に伴う溶存酸素の低下は、ヒシ帯を生息場所とする魚類などの生存に影響を与える。さらに、ヒシを植食するジュンサイハムシが増加して住宅地に飛来し洗濯物を汚したり、分解されなかったヒシが悪臭の原因になるといった生活環境への影響がある。それらに加えて、漁船や遊覧船の航行が困難になったり、景観が悪くなるという意見がある。

[プラス面]
・水中または底泥から肥料となる栄養塩を吸収するため、富栄養化を抑える。
・透明度が改善し、水中・湖底まで日光が届くようになり、水草の育成を促す。
・水生昆虫や稚魚の生育場所となり、それらを捕食する昆虫・鳥類が集まる。
・共存関係にあるアオコを抑制する。
・消失した護岸植生帯の代替として機能している。

[マイナス面]
・水面を覆うほどに繁茂した場合、溶存酸素濃度が低くなり、魚類などの生存に影響を与える。
・ヒシの葉を食害する昆虫が増加し住宅地へ飛来すると、洗濯物に付着することがある。
・分解されずに腐敗すると悪臭の原因となる。
・漁船や遊覧船の航行が困難になる。
・大量に繁茂した場合、景観が悪くなる。

[考慮が必要な事項]
・ヒシ帯の有無、ヒシの繁茂の程度、ヒシ帯に隣接する開放水域の大きさによって、水質と水生生物の種構成が変化するため、注目する自然環境の要素によって、ヒシ繁茂の管理方法が異なる可能性がある。
2.3 これまで講じられた取組

三方湖におけるヒシ対策は、ヒシの繁茂の兆行がみられた平成16年度から実施されている。平成16年度には、台風などによりヒシが湖岸に堆積し、悪臭などの問題が発生したことから除去が行われた。その後、ヒシの著しい増大に伴い、若狭町、鳥浜漁協、（NPO）世界に誇るラムサール湿地三方五湖を育む会が事業実施主体となり、国、県、町や地域住民からの寄附金などを事業費としてヒシ刈り取りの取組が行われてきた。また、平成20年には、地元での普及啓発としてヒシ刈り取りイベントも実施されている。

表 これまで実施された三方湖におけるヒシ除去対策

<table>
<thead>
<tr>
<th>実施年度</th>
<th>作業時期</th>
<th>刈取り方法</th>
<th>実施主体</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成16年度</td>
<td>6~8月</td>
<td>台船+バックホウ</td>
<td>敦賀土木事務所</td>
</tr>
<tr>
<td></td>
<td>10~11月</td>
<td>ロングバックホウ</td>
<td>敦賀土木事務所</td>
</tr>
<tr>
<td>平成17年度</td>
<td>12~1月</td>
<td>ロングバックホウ</td>
<td>敦賀土木事務所</td>
</tr>
<tr>
<td>平成21年度</td>
<td>8~10月</td>
<td>手刈り</td>
<td>若狭町</td>
</tr>
<tr>
<td>平成22年度</td>
<td>6月</td>
<td>手刈り</td>
<td>若狭町</td>
</tr>
<tr>
<td></td>
<td>6月</td>
<td>手刈り</td>
<td>鳥浜漁業協同組合</td>
</tr>
<tr>
<td>平成23年度</td>
<td>6月</td>
<td>台船+バックホウ</td>
<td>敦賀土木事務所</td>
</tr>
<tr>
<td></td>
<td>6~8月</td>
<td>手刈り</td>
<td>若狭町</td>
</tr>
<tr>
<td></td>
<td>6~8月</td>
<td>手刈り</td>
<td>鳥浜漁業協同組合</td>
</tr>
<tr>
<td>平成25年度</td>
<td>7~8月</td>
<td>機械刈り</td>
<td>NPO</td>
</tr>
<tr>
<td></td>
<td>9~10月</td>
<td>手刈り</td>
<td>鳥浜漁業協同組合</td>
</tr>
<tr>
<td></td>
<td>9~10月</td>
<td>台船+バックホウ</td>
<td>敦賀土木事務所</td>
</tr>
<tr>
<td>平成26年度</td>
<td>7~8月</td>
<td>機械刈り</td>
<td>NPO</td>
</tr>
<tr>
<td>平成27年度</td>
<td>5~6月</td>
<td>ワイヤー刈り</td>
<td>NPO・鳥浜漁協</td>
</tr>
<tr>
<td></td>
<td>7~8月</td>
<td>機械刈り</td>
<td>NPO</td>
</tr>
</tbody>
</table>

手刈り 機械刈り ヒシ刈りのイベント（H20）
3 三方湖におけるヒシの管理計画

3.1 ヒシ管理に関わるゾーニング計画

（1）ゾーニングの基本方針

上記のように、ヒシ群落には多様な機能がある一方で、漁業や生活環境への影響などもある。全体として明確にヒシ群落の影響や機能を評価できるものではなく複雑である。そのため、ヒシ帯が全くないか自然のままに繁茂させるかというような管理目標を立てることは難しい。このような状況では、湖の場所（ゾーン）によって、その場所の置かれた状況を考慮しつつ、場所ごとに異なる管理目標を立てることが有効である。ここでは、上記の多様な機能や影響を考慮しつつ、以下のゾーニングを基本方針とする。

[ゾーニング基本方針]

① 住環境や観光施設などへの影響（悪臭や景観など）を防ぐため、住宅や施設のある湖岸周辺を刈り取ることが望ましいゾーン（湖岸から200m冲程度の範囲）

② 湖水の流動性と船の航路を確保するため、はす川河口から下流方向に湖流の中心部を刈り取ることが望ましいゾーン

③ 水生生物の重要な生息場所である湖岸植生（エコトーン）の機能の一部を代替するためヒシ帯を利用することを目指すゾーン。刈り取りはしないか、部分的な刈り取りが望ましいゾーン

表 三方湖におけるヒシ管理のゾーニング

<table>
<thead>
<tr>
<th>ゾーン</th>
<th>景観イメージ</th>
<th>求める機能</th>
<th>管理方針</th>
</tr>
</thead>
<tbody>
<tr>
<td>ゾーン1</td>
<td>ヒシが、まばらに分布するか、分布せず湖面が見渡せる景観</td>
<td>ヒシが枯れる際に堆積することがない湖面が見える景観構成</td>
<td>住宅や施設のある湖岸から200m程度の沖合まで、可能な限りヒシを刈り取る</td>
</tr>
<tr>
<td>ゾーン2</td>
<td>ヒシが、まばらに分布するか、分布せず湖面が見渡せる景観</td>
<td>湖水の流動性が確保されるが、船の航行が確保される</td>
<td>はす川河口から下流方向に湖流の中心部で、可能な限りヒシを刈り取る</td>
</tr>
<tr>
<td>ゾーン3</td>
<td>湖岸の水草帯のような景観で、ヒシが湖面を自然に繁茂していいる景観</td>
<td>湖岸植生（エコトーン）の代替機能（多様な生物への生息地の提供）</td>
<td>刈り取りせず自然のままに繁茂させるか、生態系機能を向上させるために部分的に刈り取る</td>
</tr>
</tbody>
</table>

ゾーン1：ヒシはまばらか分布しない
→湖岸から200m程度の沖合まで可能な限りヒシを刈り取る
ゾーン2：ヒシはまばらか分布しない
→はす川河口から下流方向に可能な限りヒシを刈り取る
ゾーン3：ヒシが湖面を自然に繁茂する
→刈り取りは実施しないか、生態系機能を向上させるため部分的に刈り取る
3.2 ヒシの刈り取り方法

(1) ヒシ刈り取りの基本方針

ヒシの刈り取りにあたっては、次の基本方針をもってその作業を実施する。ヒシの刈り取り方法には、後述する 3 つの手法（機械刈り、ワイヤー刈り、手刈り）があり、それぞれの特徴を考慮しながら、かつヒシの繁茂状況を見極めながら作業方法を導入することとする。

【刈り取り手法導入の方針】

- 刈り取り手法の導入にあたっては、ヒシの繁茂の状況、費用及び人員の確保、処理の方法などを十分に検討したうえで、適切な手法を導入することを基本とする。
- 刈り取り手法導入については、作業の実施に先立ち、作業方法と作業位置などの計画を立案したのち、関係者（三方五湖自然再生協議会 外来生物等対策部会）間での情報共有と意見を調整しながら実施する。
- 刈り取ったヒシは、堆肥などの有効利用を検討・導入を図るほか、除去したヒシが三方湖に流れ込まないように刈り取り後の処理方法についても事前に検討する。

＝作業手法の導入方針＝

- 機械刈りは、ヒシが十分に成長した時期に実施することによって、刈り取り実施範囲に生育するヒシの大部分の個体を除去することが期待される。したがって、ヒシが最大成長に達する 7〜8 月において、ヒシが高密度で生育する場所で、刈り取りを実施する。
- ワイヤー刈りでは、ヒシの成長初期で茎がまだ細い段階に刈り取りを実施することによって、ワイヤーによる切断効果がもっとも高くなると考えられる。そのため、ヒシの成長初期であり、一定以上茎が伸長するが浮葉が水面に出現する前の 4〜5 月において、刈り取りを実施する。
- 手刈りは、ヒシが成長した後でも実施できる手法であるが、大人数での作業員の確保が必要であったり、労力としては負荷が大きい手法でもある。一方で、ヒシと他の水草が同所的に生育する場所において、ヒシを選択的に除去することができる。
ヒシ刈り取りの方法

ヒシの刈り取り方法には、異なる3つの手法、すなわち「機械刈り」、「ワイヤー刈り」、「手刈り」がある。表に、各手法の具体的な方法と特徴を示す。「機械刈り」は水草刈り取り船を用い、ヒシを刈り取り後、回収したヒシを陸上に運搬し処理する。水面付近のヒシを刈り取るため、ヒシが十分に成長した時期に実施することによって、刈り取りの効果が高くなる。「ワイヤー刈り」は、小型船舶を用い、湖底に這わせたワイヤーでヒシの茎を切断する方法である。刈り取ったヒシの回収は行わない。「手刈り」では、ワイヤー刈りと同様に小型船舶を用いるが、湖岸を踏査しながら、成長したヒシを熊手やカギ状の棒などを用いて人力で除去する方法である。

ヒシの刈り取りに関わる作業時期は、機械刈りについてはヒシが十分に成長した時期がもっとも効果的であり、ワイヤー刈りについてはヒシの成長初期の段階がもっとも効果的であると考えられる。手刈りについては、ヒシの浮葉が水面に達した後に実施可能である。

表 三方湖におけるヒシの刈り取り手法

<table>
<thead>
<tr>
<th>刈り取り手法</th>
<th>刈り取りの手法</th>
<th>特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>機械刈り</td>
<td>水面を移動しながら水草を回収する専用船舶である水草刈り取り船を用いる。</td>
<td>• ヒシを刈り取り回収する。 • 回収したヒシを陸上に運搬し処理する。 • 水深1〜2m程度の範囲の水草を刈り取ることができるが、ヒシが十分に成長した時期に実施することが効果的である。</td>
</tr>
<tr>
<td>ワイヤー刈り</td>
<td>小型船舶につないだワイヤーを湖底付近に這わせながら小型船舶を進めることによって、ワイヤーでヒシの茎を切断する。</td>
<td>• ヒシを刈り取ることが回収しない。 • ヒシが成長し茎が太くなると、ワイヤーによる切断の効果は減少する。</td>
</tr>
<tr>
<td>手刈り</td>
<td>小型船舶に作業員が乗り込み、作業員が熊手やカギ状の棒などをもちいて、人力で除去する。また、湖岸沿いを踏査しながら、同様の作業を行う。</td>
<td>• ヒシは、根茎ごと除去できる。 • 手で刈り取るため、ヒシと他の水草が同所的に生育する場所においてヒシのみを選択的に除去することができる。 • 手が届く範囲となるため、成長初期段階での作業が難しい。 • 一方、夏季〜秋季のヒシが成長した時期であっても作業ができます。</td>
</tr>
</tbody>
</table>
わイヤー刈り

※写真説明：ワイヤー刈りの写真左はワイヤー刈りの装備。舳先方向から撮影した写真を示す。鉄棒は重りとして用いられる。鉄棒の上側に鉄棒と平行にワイヤーが張られている。ヒシの刈り取りは、ワイヤーと重りを船外機の後方に投げ入れて行う。当初、ワイヤー刈りの装備は、写真のように船尾に取り付けられていたが、後に舳先に取り付けられるように改良された。その結果、ワイヤーにからまったヒシを除去するなどの作業を行う場所と操船の場所が分離され、作業の効率性が向上した。
【ワイヤー刈りの詳細】

ワイヤー刈りは、小型船舶につないだワイヤーを湖底付近に這わせながら小型船舶を進めることによって、ワイヤーでヒシの茎を切断する方法である。刈り取り作業は、通常の小型船舶をベースに、ワイヤーや鉄筋棒などの比較的安価な道具を組み合わせることによって可能であり、機械刈りに比べると安価・効率的に実施可能である。

ワイヤー刈りの詳細な実施方法を下図にまとめると。

図 装備（舳先型）の模式図
(3) ヒシ刈り取り試験

1）機械刈り

機械刈りにおいて、1年あたりに刈り取り可能な面積と量を検討し、作業上の課題を整理するために、2013年（平成25年）から2015年（平成27年）まで試験的な刈り取りが実施された。刈り取り時期は、いずれの年も7月～8月の夏季である。

各年におけるヒシの刈り取り面積は、2013年から順に、234,500 m², 211,580 m², 99,000 m²であった。同様に、刈り取り量は、2013年から順に、320 t, 220 t, 154 tであった。

3年間の刈り取り試験では、複数年にわたってほぼ同じ場所で刈り取りが実施された場合があったが、これはヒシの個体が再定着したことによる。再定着した個体は、刈り残した個体が生産した種子や土壤シードバンク中に含まれ刈り取りを実施した年には休眠していた種子、刈り取り後周囲から移入した種子のいずれかが発芽、成長したものであると考えられる。

年間の刈り取り面積と量を比較すると、2013年と2014年は類似した値であったのに対して、2015年は刈り取り面積と量ともに減少した。これは2013年と2014年に機械刈りを行った場所が、概ね同じ場所であったのに対して、2015年は陸揚げする場所から離れた場所においても刈り取りを行ったことによると考えられる。機械刈りの工程は、大きく3つのパートからなる。最初の工程は、水草刈り取り船によるヒシの回収である。次の工程では、回収したヒシを湖面上で小型船舶に受け渡し、陸揚げする場所まで運搬する。運搬の際、ヒシは小型船舶上に敷かれた網の上で保管される。最後に、陸側から重機を用いて、小型船舶上のヒシを網ごと陸揚げする。これらの工程において、ヒシの刈り取り場所と陸揚げする場所が離れていれば、小型船舶によるヒシの運搬距離が増加する。2015年の刈り取りではこの工程により多くの時間を要したため、限られた期間内にヒシを刈り取る面積が減少したと考えられる。解決策としては、運搬用の小型船舶の数を増加させるか、ヒシの刈り取り場所にできるだけ近い範囲に、新たに陸揚げする場所を設けることが考えられる。

回収されて陸揚げされたヒシは、2013年と2014年は陸揚げされた場所で保管され、その後、地面に埋められた。2015年は、同じ場所でブルーシート上に撤かれて、自然に分解・乾燥化する試みがなされている。2016年1月18日の時点において分解が進行している様子が観察され、かなり水分を含んだ状態であり、周辺地域で若干異臭が漂っていた。周辺地域に住宅はないが、農家が通る道沿いに位置し、秋季には異臭が強かったという報告もなされている。今後、回収したヒシの処理方法を検討することが課題とされる。
図 2013年から2015年において機械刈りを用いてヒシの刈り取りが行われた範囲（赤枠）。
黄色い点は、ヒシが陸揚げされた場所を示す。
2) ワイヤー刈り

2015年（平成27年）5月〜6月において、試験的にワイヤー刈りが実施された。ワイヤーが湖底を這った面積の合計は335,801m²であり、同じ場所を重複して通過した面積を除いた場合は181,321m²（重複した割合=46.0%）であった。

ワイヤー刈りでは、1回の作業時間は3時間と設定され、合計24回の作業が行われた（作業日数は15日）。刈り取り場所までの移動時間などを除くと、実質の刈り取り時間は1回あたり平均2時間15分であり、作業期間中の合計は54時間5分であった。1回あたりの作業人数は1〜3人であり、平均すると2人であった。24回の延べ人数は50人となった。

1回あたりの刈り取り面積は、季節の経過とともに増加する傾向があった。考えられる原因として、作業者が異なったことと、作業期間の後半においてワイヤー法の装備が舳先に設置する方式に変更されたことにより作業効率が向上したことが考えられる。1回あたりの作業者の人数の違いによる作業効率（1時間あたりのヒシの刈り取り面積）の明瞭な違いは認められなかった。

今後、本手法を用いたヒシの刈り取りを実施する場合は、ワイヤー法の装備として舳先に設置方式を採用し、1回あたりの作業人数は作業量を考えて2名（操船者を含む）とした計画を基本として検討することが考えられる。
図 2015年においてワイヤー刈りを用いてヒシの刈り取りが行われた範囲（赤色で示す）。

図 ワイヤー法による1回あたりのヒシの刈り取り面積の季節的変化。
図 ワイヤー法による1時間あたりのヒシの刈り取り面積の季節的変化。

A, B, C, D はそれぞれ異なる操船者を示す。記号横の数字は、ヒシを刈り取る作業
者（操船者含む）の人数を示す。矢印は、ワイヤー法の装備が、舳先に設置する方式
に変更した日を示す。

3）ヒシの刈り取り手法ごとの実施結果のまとめ

試験的に実施された機械刈りおよびワイヤー刈りと、これまでに実施された手刈りの作
業時期、事業費、作業量、刈り取り面積などを表に整理した。手刈りについては、情報が
入手できた 2009 年（平成 21 年）から 2011 年（平成 23 年）の結果について示した。
いずれの手法においても、実施条件などによりこれらの結果は変わる可能性があること
に留意し、今後の管理計画立案における参考情報として活用することとする。また、各手
法によるヒシの刈り取り効果を分析・評価した上で、目的に応じて手法を選択することと
する。
表 機械刈りの実施結果

<table>
<thead>
<tr>
<th>実施年度</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>作業時期</td>
<td>7月22日～8月3日</td>
<td>7月14日～8月2日</td>
<td>7月14日～8月8日</td>
</tr>
<tr>
<td>事業費（円）</td>
<td>8,879,805</td>
<td>5,536,132</td>
<td>5,857,457</td>
</tr>
<tr>
<td>○水草刈り取り船によるヒシの回収</td>
<td>6,842,430</td>
<td>4,104,000</td>
<td>4,104,000</td>
</tr>
<tr>
<td>○小型船舶によるヒシの運搬（うち人件費）</td>
<td>486,000</td>
<td>437,452</td>
<td>833,297</td>
</tr>
<tr>
<td></td>
<td>360,000</td>
<td>235,000</td>
<td>475,832</td>
</tr>
<tr>
<td>○重機によるヒシの陸揚げ</td>
<td>1,551,375</td>
<td>994,680</td>
<td>920,160</td>
</tr>
<tr>
<td>刈り取り面積（m²）</td>
<td>234,500</td>
<td>211,580</td>
<td>99,000</td>
</tr>
<tr>
<td>刈り取り量（t）</td>
<td>320</td>
<td>220</td>
<td>154</td>
</tr>
</tbody>
</table>

表 ワイヤー刈りの実施結果

<table>
<thead>
<tr>
<th>実施年度</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>作業時期</td>
<td>5月21日～6月16日</td>
</tr>
<tr>
<td>事業費（円）</td>
<td>945,597</td>
</tr>
<tr>
<td>（うち人件費）</td>
<td>346,240</td>
</tr>
<tr>
<td>作業回数(回)*</td>
<td>24</td>
</tr>
<tr>
<td>作業人数(人)**</td>
<td>50</td>
</tr>
<tr>
<td>刈り取り合計面積（m²）</td>
<td>335,801</td>
</tr>
<tr>
<td>刈り取り延べ面積（m²）</td>
<td>181,321</td>
</tr>
</tbody>
</table>

* 1回3時間として刈り取り作業を実施した。
** 24回の作業の延べ人数を示す。
表 手刈りの実施結果

<table>
<thead>
<tr>
<th>実施年度</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>作業時期</td>
<td>9月1日〜10月6日</td>
<td>6月4日〜6月30日</td>
<td>6月15日〜8月12日</td>
</tr>
<tr>
<td>事業費(円)</td>
<td>2,086,560</td>
<td>2,096,640</td>
<td>2,096,640</td>
</tr>
<tr>
<td>(うち人件費)</td>
<td>1,400,000</td>
<td>1,400,000</td>
<td>1,428,000</td>
</tr>
<tr>
<td>実働(人日)</td>
<td>198</td>
<td>195</td>
<td>192</td>
</tr>
</tbody>
</table>
3.3 剪り取ったヒシの活用計画（堆肥化）

適切な植生量の管理に向け、繁茂期の7〜8月に機械剪りによる除去が行われている。ヒシは窒素を多く含んでおり（表1）、これを有効活用するため堆肥化技術を検討した。

写真1 ヒシ

<table>
<thead>
<tr>
<th>表1 ヒシの成分 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水分</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>85.5</td>
</tr>
</tbody>
</table>

*水分、C/N比以外は乾物換算

ヒシ殻の分解について

1）目的

ヒシの殻を分解させるため、堆肥化期間を2か月間とし分解程度を観察した。

2）試験方法

（1）材料 含水率60％のヒシ、もみ殻、米ぬか（重量比8:1:1）
（2）作成方法 簡易堆肥化装置（保温性および保水性を高め、多量に作成したときと同様状態を再現できる）
（3）作成期間 7/30〜9/24（56日間）
3）結果および考察

（1）C/N比は堆肥化1か月後には10程度に低下したが、大部分のヒシ殻は残っており、硬いものや分解されて柔らかくなっているものなどバラつきがあった（表1、写真5）。

（2）堆肥化期間を2か月間としたが、ヒシ殻が完全に分解されることもなかった。別の方法でヒシ殻を対処する方法が求められる（写真6）。

表1 ヒシ堆肥のC/N比の推移

<table>
<thead>
<tr>
<th>日付</th>
<th>7月30日</th>
<th>8月13日</th>
<th>8月25日</th>
<th>9月24日</th>
</tr>
</thead>
<tbody>
<tr>
<td>経過日数</td>
<td>0</td>
<td>14</td>
<td>26</td>
<td>56</td>
</tr>
<tr>
<td>C/N比</td>
<td>15.7</td>
<td>12.7</td>
<td>10.2</td>
<td>9.2</td>
</tr>
<tr>
<td>C(%)</td>
<td>38.2</td>
<td>36.1</td>
<td>34.7</td>
<td>34.5</td>
</tr>
<tr>
<td>N(%)</td>
<td>2.4</td>
<td>2.8</td>
<td>3.4</td>
<td>3.7</td>
</tr>
</tbody>
</table>

写真5 1か月経過後のヒシ殻（柔らかいもの） 写真6 2か月経過後のヒシ殻
ヒシ殻を物理的に粉砕した堆肥化について

1）目的
堆肥化によるヒシ殻の分解が困難なため、物理的に粉砕し、粉砕したヒシを使用して堆肥を作成した。

2）試験方法
(1) 採取したヒシをガラス室で天日干しし、水分をほぼ飛ばした状態にして剪定枝用のチッパーシュレッダー（製品名 TOKO ベアカット）を用いて粉砕を行った。また、含水率 60％のヒシも同様に粉砕した。
(2) 粉砕したヒシを使用して、堆肥を作成した。材料は粉砕ヒシ試料*、もみ殻、米ぬか（重量比 8：1：1）とし、簡易堆肥化装置を使用して、8/26 に作成した。
*加水して水分 60%に調整

3）結果および考察
(1) 天日干しは 7/28 から行い、8/5 にはカラカラの状態になった。天日干しを行った 8 日間は、晴れが 4 日間、曇りが 4 日間であった（写真7）。
(2) 乾燥試料はヒシ殻も含めて細かく粉砕されたが、含水率 60％のヒシ試料は粉砕機に付着し粗く粉砕され、大量に処理するときの目詰まりが懸念された。
(3) 粉砕試料を堆肥化した（写真8）。1か月後の成分は C が 36 ％、N が 3.7 ％、C/N 比 9.8 となった。C/N 比 10程度に低下したため堆肥化完了と判断した。粉砕していない試料と比較して、C/N 比の低下は早かった。
(4) ヒシを水分のない状態まで乾燥することで、ヒシ殻を粉砕することができた。作業性を考慮すると、水分をできるだけ少ない状態にすることが望ましいと考えられた。粉砕ヒシは、通常のヒシと同様 1か月で堆肥化が可能であった。
3.4 ヒシ管理のモニタリング計画

（1）モニタリングの基本方針

ヒシの刈取り実施後の分布状況を把握するとともに、刈取りの効果を評価するために、分布調査を実施する。また同時に、ヒシの分布の増減に伴う水質など環境への影響をモニタリングする。特に、ヒシはアオコの発生を抑制する効果をもつことが示されているため、ヒシの刈取りがアオコなど水質にどのような影響を及ぼすかをモニタリングすることが重要である。

これらの知見に基づき、現在設定している管理計画（ゾーニング管理）の効果を検討するとともに、自然再生協議会によって必要と判断された場合には、管理計画の見直しを行うことで、順応的な管理体制を構築する。

【モニタリングの基本方針】

● ヒシの分布状況を把握するために、三方湖全域を含むように空中写真を撮影する
 空中写真の撮影時期は、ヒシが最大成長に達した 8 月とする。
● 水質調査は、アオコが発生しやすい夏季の 8 月に行う。
● 管理計画の効果を検討する上で、刈取り前後やその後のヒシの分布状態の時間的変化を把握することも有用であることから、比較的安価で継続的に実施可能なモニタリング方法を検討することにも留意する。

表 三方湖におけるヒシのモニタリング計画

<table>
<thead>
<tr>
<th>項目</th>
<th>モニタリングの手法</th>
<th>実施時期・回数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヒシの分布状況</td>
<td>ヒシが最大成長に達した後の時期において、空中写真を撮影する</td>
<td>8 月に実施年1回</td>
</tr>
<tr>
<td>水質調査</td>
<td>ヒシの刈取り実施後に、アオコが発生しやすい夏に、水質計を用いて計測する</td>
<td>8 月に実施年1回</td>
</tr>
</tbody>
</table>
（2）水質調査の実施

2015年（平成27年）において、5月～6月にワイヤー刈りによるヒシの刈り取りが行われ、同年7月～8月に機械刈りによる刈り取りが行われた。そこで、同年において、アオコが発生する可能性が高くなる8月に水質調査が実施された。調査地点34か所が選定され、多項目水質計を用いて水質が計測された。調査地点は、三方湖の上流側から下流側までを含む範囲とし、ヒシの繁茂によるアオコや水質への影響をモニタリングするために、ヒシが分布しない「開放水域」、ヒシがヒシ帯を形成しておらず低密度で「まばらに分布している場所」、ヒシが高い密度で分布している「ヒシ帯」の3地域において、調査地点が決められた。水質の調査項目は、ヒシの繁茂およびアオコの発生と関連するものとして、水深、水温、クロロフィル濃度、濁度、溶存酸素濃度、塩分濃度の6項目について計測された。
図 水質計測地点図。

図中の数字は、調査地点の番号を示す。調査地点 27-31 および 34 はおおよそその位置を示し、それ以外の調査地点はGPSによる記録に基づいてプロットした。調査地点をヒシの分布状況に応じて 4 タイプ、すなわち「開放水域」（ヒシが分布していない場所）、「ヒシがまばらに分布」（ヒシ帯を形成しておらずヒシの密度が低い場所）、「ヒシ帯」（ヒシの密度が高い場所）、その他（ヒシ帯と開放水域の境界など）に分類してプロットした。背景の空中写真は 2015年9月15日に撮影された。

データ集計の結果、各調査地点の水深の平均値は 1.74 m であり、範囲は 0.14-2.76 m であった。水温は、すべての調査地点で 24℃以上であった。

次に、クロロフィル濃度、濁度、溶存酸素濃度、塩分濃度の水質 4 項目とヒシの分布状況との関係を分析するため、先述した「開放水域」、「ヒシがまばらに分布」、「ヒシ帯」の調査地点間で、各計測値を比較した。ヒシの分布状況がヒシ帯と開放水域の境界など「その他」に該当する調査地点は、この分析からは除外された。また、空中写真の判読から、水月湖につながる瀬戸付近において経年的にヒシの分布が見られなかったため、開放水域の調査地点は「開放水域（瀬戸付近）」および「開放水域（瀬戸付近以外）」に分類して、水質の比較を行った。

その結果、瀬戸付近の開放水域では、他の調査地点と比較して、クロロフィル濃度が低い傾向があった。この地域のみ、他の地域と比べて塩分濃度が高い傾向があり、塩分濃度の高さが植物プランクトンの増加を抑え、その結果クロロフィル濃度が低下した可能性が考えられる。別の要因としては、水月湖からの水の流入に伴う塩分濃度以外の要因が影響した可能性も考えられる。瀬戸付近の開放水域の濁度と溶存酸素濃度については、クロロフィル濃度とは対照的に、高い傾向を示した。

瀬戸付近以外の開放水域では、クロロフィル濃度が高い傾向を示し、溶存酸素濃度は中程度であり、既往の研究の予測と一致した。一方、濁度は低い傾向を示した。

ヒシ帯ではクロロフィル濃度と溶存酸素濃度が低くなる傾向にあり、ヒシがまばらに分布する場所でも逆の傾向を示した。これらの結果は、「2.2 ヒシの繁茂と生態系・作業・生活環境への影響（1）自然環境（水質・生物）への影響」で述べた調査結果と一致する。

全体的には、クロロフィル濃度は数十 μg/L 以下であり、ヒシが大規模に繁茂していなかった頃の三方湖の値と比べて、低い傾向を示した。
図 水質 4 項目の調査結果。

調査地点を「開放水域（瀬戸付近）」、「開放水域（瀬戸付近以外）」、「ヒシがまばらに分布」、「ヒシ帯」に分類して、クロロフィル濃度、濁度、溶存酸素濃度、塩分濃度を比較した。集計結果は箱ひげ図で示されている。各箱の中央の横向きの太線は中央値、箱の最上端は第 3 四分位數、箱の最下端は第 1 四分位數を示す。上側のひげ（横向きの線）および下側のひげ（横向きの線）は、それぞれ最大値および最小値を示す。nは、調査地点の数を示す。

以上の調査結果は、今後のヒシの管理計画の立案と対策の効果検証のための基礎情報として活用することとする。
3.5 三方湖におけるヒシの順応的管理およびガイドラインの見直し

三方湖におけるヒシの繁茂は、漁船航行への阻害や貧酸素化による魚類生息への影響など負の面が大きい一方で、コンクリート護岸が進んだ三方湖においては、本来は湖辺に成立する水辺の植生の機能の一部を代替している面もある。

そこで、今後の三方湖におけるヒシの対策については、本ガイドラインで提示するヒシのゾーニング計画に基づき、被害対策と代替植生の維持の双方を両立できるよう推進することを提言する。

また、ヒシ除去の作業の実施と同時に、モニタリングを実施することにより、その効果を検証することとする。その際、対策作業とモニタリングの結果を十分にずり合わせることとが肝要となる。そこで、三方湖におけるヒシの管理については、三方五湖自然再生協議会外来生物等対策部会が中心となり、関係者間で情報共有と協議の場を維持し、順応的な管理を推進することとする。

さらに、ヒシの分布や対策の状況の変化および新たな科学的知見の蓄積に応じて、定期的に本ガイドラインの見直しと改訂を行うこととする。

三方湖のヒシの取組は、三方五湖全体への影響もあることから、ヒシ対策取組の内容と作業の成果などについては、三方五湖に関わる住民に周知するよう普及啓発を実施することも肝要である。

[三方湖におけるヒシの順応的管理]

● 三方湖におけるヒシ帯の存在は、負の面と正の面をあわせもつことから、被害対策と機能活用の双方を両立できるよう、ゾーニングの方法や管理手法を順応的に改善しながら推進する。

● ヒシ除去作業とともにモニタリングを実施して効果検証を行い、その後の管理作業にフィードバックする。

● 三方湖におけるヒシの管理については、三方五湖自然再生協議会外来生物等対策部会が中心となり、関係者間で情報共有と協議を行いながら推進する。また、同協議会の自然護岸再生部会とも連携しながら取組を推進する。

[三方湖ヒシ対策ガイドラインの見直し]

● ヒシの分布や対策の状況の変化および新たな科学的知見の蓄積に応じて、定期的に本ガイドラインの見直しと改訂を行う
4 参考：三方五湖自然再生事業実施計画抜粋（三方湖ヒシ対策）

（1）事業実施者の名称及び実施者の属する協議会

事業実施者の名称：鳥浜漁業協同組合、ハスプロジェクト推進協議会、（NPO）世界に誇るラムサール湿地三方五湖を育む会、富永修（福井県立大学教授）、吉田丈人（東京大学准教授）、西廣淳（東京大学助教）、加藤義和（京都大学）、美浜町、若狭町、福井県

実施者の属する協議会：三方五湖自然再生協議会

（2）事業実施区域

1）事業実施区域

事業実施区域は、福井県三方上中郡若狭町のうち三方湖とする。

図 3.4-1 三方湖におけるヒシへの対策事業実施区域
2）対象となる区域の現状

三方湖では、2000年代に入ってからヒシの増加が目立つようになり、2008年（平成20年）以降は湖面の半分以上の面積を高密度な群落が覆うほどに繁茂するようになった（図3.4-2）。この状況を受け、主に福井県の事業による部分的な刈り取りが2009年（平成21年）から行われている。

過去の三方湖におけるヒシの分布は、1960年代の空中写真から推測する限り、湖岸付近の湾状の部分に限定されており、湖の中央部には生育していなかったものと推測される（図3.4-3）。この傾向は地元住民からの聞き取りの結果とも一致する。近年における広範囲にわたる繁茂は、何らかの環境変化を反映したものである可能性がある。

図3.4-2 ヒシが繁茂した三方湖（カラー空中写真）及び三方湖におけるヒシ群落の面積（グラフ）

折れ線上の数字は、湖水面の面積に対する占有率を示す（吉田丈人（代表）2012．福井県三方湖の自然再生に向けたウナギとコイ科魚類を指標とした総合的環境研究．最終成果報告書．より改図）。

図3.4-3 昭和38年（1963年）8月に撮影された三方湖の空中写真

湖の北側・東側の湾部などの白みをおびている部分がヒシ群落と思われる（国土地理院撮影写真から改図）。
3）対象となる区域の課題

広範囲・高密度なヒシ群落は、航路の支障や特定の昆虫の大発生など人間による湖利用に負の影響を与える場合がある。一方、ヒシの繁茂は、三方湖の生物多様性や水質にも多様な影響を及ぼす可能性がある。現時点で指摘・示唆されている主な影響を表3.4-1にまとめた。表中では、確実性の高いものに「○」、文献により示唆され今後検討する必要があるものに「●」をつけた。これらの多面的な影響を検証するとともに、生物多様性保全と湖の利用を両立させた賢明な管理のあり方を明らかにすることが求められている。

三方湖で繁茂したヒシの枯死体が大量に流出することで、三方湖の下流に位置する水月湖・菅湖・久々子湖に影響を及ぼすことも懸念される。

表 3.4-1 ヒシ繁茂の影響

<table>
<thead>
<tr>
<th>湖の利用への影響</th>
<th>生物多様性への影響</th>
<th>水質・底質への影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>○漁船・観光船の航行が困難になる（負の影響）。</td>
<td>○ニュエリカ類の減少・線虫類の增加など、底生生物の種組成変化が生じる。</td>
<td>○枯死体が底質に堆積し、湖底のヘドロ化が進む。</td>
</tr>
<tr>
<td>○枯死体が堆積・腐敗した場所で悪臭が発生する（負の影響）。</td>
<td>○付着性動物が増加する。</td>
<td>○刈り取って除去することで、湖から窒素やリンが除去される。</td>
</tr>
<tr>
<td>○水面が見えにくい景色になる。</td>
<td>●貧酸素化のため、群落内では魚類が減少する場合がある。</td>
<td>●堆積物の巻き上げを抑制し、透明度を増加させる。</td>
</tr>
<tr>
<td>●アオコの発生を抑制する（正の影響）。</td>
<td>●貧酸素化のため、群落内では魚類が減少する場合がある。</td>
<td>●脱窒素反応が促進され、湖水中の窒素濃度が低下する。</td>
</tr>
</tbody>
</table>

参考文献
1）吉田丈人（代表）（2012）福井県三方湖の自然再生に向けたウナギとコイ科魚類を指標とした総合的環境
研究、最終成果報告書。

(3) 事業の目的と意義

本事業は、生物多様性保全と湖利用の両立を図るヒシ管理のあり方を明らかにすることを目的とする。具体的な管理手法（刈り取り範囲設定など）は、最新の科学的知見にふまえた仮説と自然再生協議会での合意に基づき、年度ごとに設定するものとし、順応的管理を通して適切な管理手法の確立を目指す。

あわせて、刈り取られたヒシの利活用についても実践的に検討する。

(4) 事業の実施方法

1) モニタリングの実施

・繁茂の範囲の把握
 空中写真や人工衛星画像などのリモートセンシング技術を活用し、ヒシの繁茂の範囲を把握する。

・水質、水生生物への影響調査及びアオコ発生との関係調査
 ヒシ群落内外の水質・底質条件及び生物群集の調査を行い、ヒシ繁茂が生態系に及ぼす主要な影響を把握する。

・研究に伴うヒシの試験刈りの実施
 上記の研究のため、湖内にヒシの刈り取り試験区を設置し、試験的な刈り取りを実施する。また、漁船等の航路を確保するための刈り取りを行う。

2) ヒシの適正な管理方法の開発

・自然再生協議会での合意に基づく順応的管理の過程を通じて、適正な管理のあり方を検討する。

3) ヒシの利用（ヒシの堆肥化にむけた研究）

・湖において除去されたヒシを有効活用するため、堆肥化にむけた研究を実施する。ヒシの水分や有効成分を明らかにし、ヒシの過剰な水分や養分を調整するために、ヒシに混合する補助資材の種類と配合量について研究を行う。
(5) 事業のスケジュール

平成25年度からの3年間で、水質、水生生物への影響調査を行い、ヒシの繁茂や刈り取り管理が三方湖の生態系にもたらす主要な影響を明らかにする。

■事業のスケジュール

短期目標：・ヒシの繁茂や刈り取りが生態系にもたらす主要な影響を把握する。
*平成25年～

中期目標：・「繁茂状況の把握」、「管理手法の検討」、「管理の実施」、「モニタリング・評価」からなる管理手順を確立する。
*～平成27年

長期目標：・ヒシの繁茂範囲が適切に管理され、三方湖の生物多様性と湖沼利用の両立が実現する。
*平成28年～